Clips Defense Systems

How the military is unifying communications and collaboration

My latest for Defense Systems Magazine:

How the military is unifying communications and collaboration

The lessons of VOIP are helping expand and combine rich communications and collaboration on military networks

Although military technologists sometimes talk about the Global Information Grid in the present tense, one element of the GIG vision that is still in the works is the implementation of a global everything-over-IP network that allows phone, videoconferencing and other synchronous communications to ride over the same IP network that e-mail and other data communications use.

The transition to unified communications and collaboration is also playing out in the corporate world, where voice-over-IP (VOIP) phones are appearing more frequently. Richer communications sessions that combine voice, video, chat, Web collaboration and desktop application sharing are also becoming more common. And the same is true in the military — at least, in certain enclaves that have deployed the required network upgrades. But making such services span the full breadth and depth of the military is a much bigger challenge and will take years to achieve.

Read More

Clips Defense Systems

Interview I Did on “The dark side of Web 2.0 technologies”

Federal News Radio 1500 AM: The dark side of Web 2.0 technologies

The Interview came in response to this story for Defense Systems:

Social networking poses risk to operational security — Defense Systems

In an earlier era, “loose lips sink ships” was the military’s warning not to let even small details about military movements and operations slip in casual conversation.

Clips Defense Systems

Defense Systems Clips

These are excerpts from stories I wrote for Defense Systems, some of which were also picked up by other publications from 1105 Media, such as Federal Computer World.

Army puts FCS network through paces in demo

David F. Carr
Nov 17, 2008

C4ISR On the Move testbed shows Future Combat Systems prototypes in action

The future of the Army’s battle command- and-control systems came to life this summer at Fort Dix, N.J., during the Command, Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR) On-the- Move Product Management Office testbed project there. In July, a convoy of modified Humvees loaded with racks of network equipment and experimental antennas rolled out for maneuvers in Vietnam Village, an area of the base’s training range.

The concept of C4ISR encompasses all the means for using electronic communications to gather and analyze information, command and control military units, and coordinate activities. The onthe- move generation of C4ISR technologies that the Army and Defense Department are working toward will expand the use of sophisticated computing and digital communications in the field and make them more available to warfighters as they move. They currently must stop to set up equipment and antennas.

The exercise used a mix of current and next-generation computing and communications equipment to test interoperability.

Compatibility will be important when the first Future Combat Systems (FCS) mobile wireless technologies and related battle command systems reach the field, They need to coexist, at least at first, with earlier generations of equipment.

The Humvees had a domed antenna for satellite communications and a cylindrical one to support the Army’s Warfighter Information Network–Tactical (WIN-T) program, a line-of-sight wireless communications system designed to support voice and data. Specifically, the exercise featured a test version of WIN-T Increment 2. Although the Army has already fielded a preliminary Increment 1 version of the technology for some operations, Increment 2 comes closer to supporting mobile networks that can automatically reconfigure themselves to support other available WIN-T antennas, even for a convoy in motion. Via the satellite link, the communications vehicles would be able to route voice and data signals among soldiers on the ground and vehicles in the area.


The C4ISR On-the-Move project was the first large-scale test of the FCS network to incorporate all tiers of communication from satellite to vehicles and equipment carried by soldiers, said Randy Zimmerman, a former Defense Logistics Agency officer who consults with the Army on these systems. Although there were glitches, the network performed well, he said.

The Communications-Electronics Research, Development and Engineering Center (CERDEC) in the Army’s Research Development and Engineering Command organized the testing exercise.

Although it was organized as if it were a continuing systems development effort led by Lt. Col. William Utroska, C4ISR On-the-Move product manager, its focus was on system-ofsystems issues rather than any one system.

“If you ask me what my products are as a product manager, the answer is I don’t build a thing,” Utroska said to a group of Army and DOD officials at an event planning session in late July. “What I do is provide a body of knowledge. I don’t have a requirements document. What I do is work off the Army Science and Technology Master Plan.” As the Army refines its plans for the suite of technologies it wants to deploy to maintain information superiority in the field, Utroska tries to assemble a representative assortment of prototype technologies.

In cases where a prototype is not available, he modifies current technology to provide an approximation of the desired capability or uses computer simulation.

The contractors and Army product and project managers who participate get immediate feedback on how their technologies operate and interoperate during simulated field conditions designed to be relevant to their mission, Utroska said.

One of his primary goals is to reduce the risk associated with new system development by identifying problems early.

CERDEC has been conducting annual On-the-Move test events since 2001, but since the effort was formally chartered in 2006, the center has also been conducting related activities year round.

Planning and preliminary testing for this year’s event began in April, but by the time Defense Systems visited Fort Dix at the end of July, operations reached a more intensive pace. They ran from 2 p.m. to 2 a.m. to test how the equipment worked and how well soldiers would be able to operate it in the dark and when they were tired.

A presentation day followed the final week of testing. A formal report, including a detailed analysis of all the data gathered during network testing, will follow in November.


Many of the systems evaluated are still several years away from being ready for use in the field. Much of it is prototype gear that is half as rugged and twice as heavy as it is supposed to be in its final incarnation.

However, making products that meet military standards for withstanding vibration, shock and temperature extremes is expensive, and the Army to needs to evaluate whether these systems work well enough to be worth that effort, Zimmerman said. “Part of what we’re after is determining whether the concept itself makes sense.” The exercise showed that the FCS network could perform well when the conditions were right, although it is also important to analyze the conditions when it struggled, Zimmerman said.

Data collection and analysis are among the most important aspects of the tests, Utroska said, and his team has developed new techniques for analyzing ad hoc wireless networks that are more complex and harder to monitor than the static networks of the past.

The On-the-Move team also emphasizes designing a test architecture that will stretch the capabilities of every system it tests, he said.

“For example, we had one piece of equipment that in the lab provided the correct throughput that it was supposed to, but when we brought it out here, it was nowhere near that,” Utroska said. In resolving the issue, the vendor “was able to come up with a software bug that they never would have found through their analysis in the lab.” Too often, the difficult challenges of system-of-systems engineering — where what matters is not the performance of any individual system but how many systems fit together — have been addressed with Microsoft PowerPoint presentations rather than rigorous testing, he said.

“You’ve heard of ‘build a little, test a little,’” he said, citing a maxim for incremental system development. “Here, it’s ‘build a little, stress a little, test a little.’ ”


The scenario for the C4ISR On-the- Move Product Management Office testbed project involved an insurgent force that had a supply of AK-47 guns, rocket-propelled grenades and a suspected improvised explosive device (IED).

Shrugging off their backpacks, the soldiers deployed the antennas atop short tripods, plugged them into their Panasonic Toughbook ruggedized laptop computers and tried to see who could tune in a video feed from one of two unmanned aerial vehicles (UAVs) buzzing overhead.

The Army conducted the testing with a combination of scripted scenarios designed to make technologies interact predictably and unscripted ones designed to test whether soldiers could make the equipment work for them during stressful situations.

With the officials on site, the foray to Vietnam Village was a more scripted test because visitors from a task force on IED countermeasures wanted to see specific capabilities demonstrated before they returned to Washington.

First, they got a walkthrough of the mission-planning technologies being used for the test, including a tabletop touch-screen system for displaying maps and sketching routes. Users could edit those maps and other images with their fingertips.

The mission planners then led the way to the next room in the command post’s maze of tents, where they walked through the scenario again, on conference room-size screens, and showed how the visualization system could pivot from an overhead view to a simulated groundlevel view for another perspective of the terrain.

The UAV video feed test used two aircraft: Buster, a twin-wing mini-UAV from Mission Technologies, and gMAV, a gasoline-powered version of Honeywell’s Micro Air Vehicle ducted fan design.

The scenario involved a soldier on the ground tapping into the video feed from a UAV someone else was operating. In future versions of the system, a soldier might also be able to take control of a surveillance camera mounted on the UAV – to zoom in on an area of interest, for example – without interfering with the UAV operator’s control of the craft.

One of the Army’s Future Combat Systems “concepts is that everyone should have access to everything that’s flying above them and be able to see what it’s seeing,” said Randy Zimmerman, a former Defense Logistics Agency officer who now consults with the Army on these systems.

After spending a few minutes examining the UAV video feed, the officials walked along a road to an area where an IED was supposed to have been planted.

For testing purposes, the IED was simulated by a siren triggered remotely with a handheld device in the same way that IEDs in Iraq and Afghanistan are often triggered by a cell phone, garage door opener or other radio-based device from a concealed location close to the scene of the attack. After the test supervisor showed how he could trigger the explosion by making the siren sound with his remote control, the officials watched a scenario for proposed countermeasures.

First, a remotely controlled ground robot rolled down the road, peering into the woods until it saw the location of the IED. Then a patrol of soldiers followed, with one man carrying a backpack with a mast sticking out of it – a prototype of a system called Dismounted IED Countermeasures Equipment (DICE), which broadcasts radio interference across a broad assortment of frequencies associated with IED attacks.

The system proved that it could prevent the simulated IED from being triggered.

DICE is the mobile version of IED Countermeasures Equipment, which is usually mounted on a vehicle. The system’s goal is to provide a way to neutralize hazards such as IEDs when it’s not practical to avoid, disarm or destroy them.

After the officials left, Zimmerman said, “we reset the platoon and did the whole test as if the VIPs were not there at all,” making the exercise a little less scripted and the simulated IED harder to find.

More importantly, in the course of 10- day and 10-night missions, he felt he was able to effectively evaluate the technology and how the soldiers worked with it in a variety of settings and scenarios. “I got several things out of it, starting with insight into how a future force network might perform.”

Pasted from <>

Training to go for Marines

David F. Carr
May 26, 2008

University is helping make portable simulators easier to use

Even as the Marine Corps begins using the Deployable Virtual Training Environment (DVTE) to offer laptop PC-based virtual training for infantry, helicopter, tank and amphibious operations, the Marines are asking the University of Central Florida laboratory that helped design the system to make it easier to use, particularly for instructors.

In March, the Office of Naval Research awarded the university a a three-year, $7.3 million contract for research to improve DVTE’s tools for setting up new training scenarios, gathering and analyzing the results, and giving feedback to service members who participate in virtual training sessions.

The university’s Institute for Simulation and Training worked on a technology demonstration project that led to the development of DVTE and now has been charged with helping develop the next generation of DVTE.

“Our research is on how to make simulators into training systems,” said Denise Nicholson, director of the university’s Applied Cognition and Training in Immersive Virtual Environments (ACTIVE) laboratory and principal investigator for the project. The lab usually works on cutting-edge projects and researches technologies that might not find their way into the field for several years. But DVTE is aimed at near-term practical results, Nicholson said. The plan is to deliver one incremental software upgrade per year during the next three years.

As its name suggests, DVTE is meant to be deployable, meaning that Marine units could take it with them when they go into the field. Although so far it’s mostly being employed at training facilities on the regimental level, amphibious units have reported using it for as long as 60 hours per week aboard Navy ships.

Pasted from <>

Mashed intelligence

David F. Carr
Nov 17, 2008

Tech Focus

As part of an effort to allow military planners to bring more data from varied sources together on one screen, Defense Intelligence Agency officials are taking a mashup approach. Their strategy resembles Google Maps. But DIA’s data and maps are classified, so instead of using Google’s services, the agency created its own system, known as Overwatch.

The application’s developers say they have gone further than any other Internet service by allowing users to easily toggle back and forth among different visualizations of the same data.

“Using these mashup capabilities, we can deliver any combination of information at any time to any user,” said Steven Willett, an information technology specialist at DIA who has been leading Overwatch’s development.

Mashup applications emphasize bringing together the elements of an application within a Web browser rather than relying on server-based integration and aggregation.

Mashups use technology based on JavaScript and Asynchronous JavaScript and Extensible Markup Language, a technique for updating Web pages that eliminates the need to reload the page. By making a client program responsible for aggregating data and displaying the results, a mashup can eliminate the need for a Web server to first collect the data.

However, an enterprise mashup must meet higher standards for security, governance, monitoring and availability. Overwatch does that with a layer of server software that regulates the entire process and provides the client-side code.

Pasted from <>

Federated architecture from the ground up

David F. Carr
Oct 20, 2008

The foundation of a solid enterprise architecture requires specific blueprints for systems

The Defense Department is working to define a federated approach to enterprise architecture to tame the sprawling complexity of the military’s communications and computing systems. Although many DOD officials agree that a federated enterprise architecture is a good idea, they must first decide what approach to take.

During the past year, DOD performed a series of federated architecture tests that produced significantly different approaches to the concept. Now the challenge is to fuse them into a set of recommendations and requirements.

A DOD Federated Architecture Working Group composed of representatives from the military services met in August to develop a set of guidelines that the group plans to release later this year. Federated architecture is a divide-and-conquer approach to achieving enterprise architecture. Federated architecture recognizes that the military services — and all of DOD – are too large for a comprehensive picture of their systems that would fit within a single diagram or set of documents.

Instead, the idea is to build a master plan by creating architectures for each system development program and thoroughly documenting its interfaces with other systems. The goal of enterprise architecture is to create a set of plans that define all the elements of an enterprise and how they interact, just as an architectural plan for a home or an office building defines everything from its physical structure to its electrical and plumbing systems.

Pasted from <>